Descriptive Set Theory
Lecture 25 $\mathrm{mag}_{\text {aster }} P_{S}=P_{5 \text { ma }}$
Operation A (recall). Operation of applies to a sequecce $\left(P_{s}\right)_{s \in \mathbb{N}}<\mathbb{N}$ of ribch of a Polish apace X, yielding the ut

The typical application was: let $f: \mathbb{N}^{\mathbb{N}} \rightarrow X$ be continuous al $P_{s}:=f([s))$. We proved hat $f\left(\mathbb{N}^{\mathbb{N}}\right)=A\left(P_{s}\right)_{s \in \mathbb{N}^{\text {UN }}}=A\left(\bar{P}_{s}\right)_{s+\mathbb{N}^{(N N}}$. This implies $\Sigma_{1}^{\prime} \leq A \Pi_{1}^{0}$. It's dear $H_{A} A \Sigma_{1}^{!} \leq \Sigma_{1}^{1}$, so

$$
\Sigma_{1}^{1}=A \Pi_{1}^{0}=A \Sigma_{1}^{1} .
$$

Today we bow hit the classes of Bane meas. al univ. yeas. sets are closed under operation 6 . Since Π_{1}^{0} belongs to these classes, so does $\Sigma_{1}^{1}=A \Pi_{1}^{0}$, so analytic (and here also wanalgic) sets are Baire meas. and universally meas.

Def. For a σ-alyehra S of rahisets of X, call a set $A \subseteq X$ ζ-small if Powered $(A) \leq S$; ohurvise it's φ-large. s-small sets form a σ-ideal.
Examples. Meragne sets for BM σ-all, and J-anall wets for μ-meas. σ-all.

Recall that tor BM al lebesgue means. σ-algebras, we had a way of extracting the largest measurable salad A^{\prime} (up to sal uts) of a given set $A \leq X$. For $B M$, this was $U(A) \cap A$, ad for lubesgere zens., his vas $D(A) \cap A$. Here vel define the dual notion to this, namely smallest meas. supeeset.

Del. let S-alg on a ut X. We say the a eft A^{\prime} is an \mathcal{B} envelope of a ut $A \leq X$ if $A^{\prime} \geq A, A^{\prime} \in \zeta$, ad ung S-meas subset of $A^{\prime} \backslash A$ is \mathcal{I}-small. In other words, A^{\prime} A' is the smallest lap to 8 -small ρ-wear. spersed of A. Say the g admits envelopes if even $A \subseteq X$ has an g-envelope.

Obs. Envelopes are wnigue up to shall sets.
Excels. (a) BM σ-all admits envelopes.
Pad. Given $A \subseteq X, X$ Polish, we know $h t U\left(A^{c}\right) \wedge A^{c}$
 is the largest $B M$ subset of A^{C}, ap to meager set $T_{m,},\left(U\left(A^{c}\right) \cap A^{c}\right)^{c}$ is the smallest $B M$ spperset of A, up to uncased.
(b) μ-nens σ-ally admits envelopes, for ams finte Boel meas. J. Proof. By theoving out the thbl at af atoms, ang cssuese J is nonatocic, so WLOh $\mu=$ leb mens. on $[0,1)$. For ung $A \leq[0,1)$, talee $A^{\prime}:=\left(D\left(A^{c}\right) \cap A^{c}\right)^{c}$.

Thaeen (Szpilcaje - Marczewski). If a oraly \mathcal{S} on a st X adaits envelopes, then it is dosed under operation A
Prood. Lt $\left(P_{s}\right)_{s \in N^{\prime N}} \leq Y$. If we had nt each $P_{s}=\bigcup P_{s} P_{n}$, then $A\left(P_{s}\right)_{S \in \mathbb{N}^{<N}}=P_{\phi} \in S$, so we'd be done. We'll reduce to the case where $P_{s}=\bigcup P_{\text {sin }}$ up to an \mathscr{Y}-suall wt, which is enough becose throvion out atbly wang Y-suall ats frow the space X doesn's affect the 9 -weas- of $A(R)$,
 Consiler $\tilde{P}_{s}:=\not\left(P_{t}\right)_{s \in t \in \mathbb{N}} \mathbb{N}$. Note Kt $\widetilde{P}_{s} \subseteq \widetilde{P}_{s}$ al $\tilde{P}_{s}=\bigcup_{n} \tilde{P}_{s-n}$ so $A\left(\tilde{P}_{s}\right)_{s \in \mathbb{N}}<\mathbb{N}=\tilde{P}_{p}=\lambda\left(P_{s}\right)$, Bat we don't know if \tilde{P}_{ϕ} is
S-neas, so we need sourthing is between $P_{s} \geq ?, ? P_{5}$. let $P_{s}^{\prime}:=\operatorname{eur}\left(\tilde{P}_{s}\right) \cap P_{s}$, wher $\operatorname{evr}\left(\tilde{P}_{s}\right)$ is an ζ-ean
for \tilde{P}_{s}. Thus $\phi\left(P_{s}\right)_{s} \geq A\left(P_{s}^{\prime}\right)_{s} \geq A\left(\tilde{P}_{s}\right)_{s}=A\left(P_{s}\right)_{s}$, so $f\left(P_{s}\right)_{s}=f\left(P_{s}^{\prime}\right)$ Note tht $\bigcup \bigcup_{s_{n} n}^{\prime}$ is an S.env. Gor $\bigcup_{u} \tilde{P}_{s-v}=\tilde{P}_{s}$, so by wingeenen, P_{s}^{\prime} al $\bigcup_{u} P_{\text {sn }}^{14}$ we equal and S-sall, which is what re reecled.

Cor. Analytic (and hence also connalibic)ntes we Beire nees. al unive ness.
Proective Hierarchy.
We know hat $\Sigma_{1}^{1}=\exists^{N^{N}} B$ al we cantinue:

$$
\begin{aligned}
& \Sigma_{n+1}^{\prime}:=\exists^{N^{N}} \Pi_{n}^{1} \\
& \pi_{n}^{\prime}:=\neg \Sigma_{n}^{\prime} \\
& \Delta_{n}^{\prime}:=\sum_{n}^{\prime} \cap \Pi_{n}^{1} \text {. }
\end{aligned}
$$

The existance of umiversal projective liorarchy, length w stes al striat containeents follow as before ly diagonalizction. We won't stady these ents beme questions about then are inllep. from $Z F C$.

Guplete sts.
Def. For sets $A \subseteq X$ \& $B \subseteq Y, X, Y$ Polich, a tuction $f: X \rightarrow Y$ is called a reduction of A to B if $\forall_{x} \in X$,

$$
x \in A \Leftrightarrow f(x) \in B
$$

i.e. $f^{-1}(B)=A$. We say he A is Wadge aclucitle to B if thece is
 a continnons recuction of A to B.
We write $(A, X) \leqslant w(B, Y)$.
Del. Let Y be Polish al Γ be a clan of set $\left(\Pi_{7}^{\infty}, \Sigma_{1}^{\prime}, t_{c}\right)$. We say hat $B \leq Y$ is Γ-hacd (resp. T-coplete) if \forall subad $A \leq X$ in a $D-\operatorname{dim} \Lambda^{X,}(A, X) \leqslant w(B, Y)$ (resp. and $B \in \Gamma$).

Note. If set is Γ-hard/womplete, han its wopleneat is $工$-hadd/op.
Renure. We cesuire the dowain be O-din to cenove the top ohstinctions (connectedem) to building ontionour rechctions.

Nite that if a set is say \sum_{7}^{0}-hard, then it is not π_{7}^{0} (otherwise, every Σ_{7}^{0} set would be a cortinnoas preineage of a π_{7}^{0} set hence $\Sigma_{7}^{0} \subseteq \Pi_{7}^{0}$, which is false). There ont the this is the only obstruction to being in Π_{7}^{0}.

Theorem (Wadge). Lt Y be a 0 -dim Polish space al $B \leq Y$ Bowel. ut Γ be \sum_{α}^{0} or $\Pi_{\alpha}^{0}, \alpha<v_{1}$. Then B is Γ^{2}-hard $\Leftrightarrow B \notin \neg \Gamma$.

To prove His, we first need an amusing lemma: $^{\text {and }}$
lena. For subsets A d B of O-dim Polish spaces X ad Y, cither $(A, X) \leq_{u}(B, Y)$ or $(B, Y) \leq_{w}(A, X)$.
Proof. As ae have down in $H \| y, X$ a Y ave homed t. dosed subucts of $\mathbb{N}^{\mathbb{N}}$, ie. $X=[T]$ al $Y=[S]$.
We define the Wadge gave $G_{w}(T, S, A, B)$:
Pl. $x_{0} \quad x_{1} \quad \cdots \quad$ Rules: $\left(x_{0}, \cdots, x_{n}\right) \in T$ al PL. $y_{0} y_{1} \quad\left(y_{0}, \ldots, y_{n}\right) \in S$.

Player 2 wins $\Leftrightarrow(x \in A \Leftrightarrow y \in B)$, Sere $x:=\left(x_{n}\right), y=\left(g_{n}\right)$. $\Leftrightarrow \quad(x, y) \in(A \times B) \cup\left(A^{c} \times B^{C}\right)$

This is a Boal gave, so it's defermined. Suppose P2 nas a ninniang strategy, which we mag view as a monotone function $P: T \rightarrow S$ which $\operatorname{man} p{ }^{\prime}\left(x_{0}, \ldots, x_{n}\right)$ to $\left(y_{0}, \ldots, y_{n}\right)$. Since $\forall t \in T$, $|\varphi(t)|=t$, to the induced wap φ^{+}has do-ain $[T]$, so $\varphi^{*}:[T] \rightarrow[S]$ and is continnous.
Then P^{R} is a recluction of A to B benge if $x \in A$, then $\varphi^{*}(x)$ is the response at $P 2$ to ke plag x at é, hence $x \in A \Leftrightarrow \varphi^{*}(x) \in B$.
linilarly, it PI has a viming steateyg, then $B^{2} \leq_{w} A$.
Proof of Wadge's thorm. \Rightarrow If B is Γ-anplete, then $B \in \neg \Gamma$ wolld inply mat $\Gamma \leqslant \subseteq \Gamma$, a watiadiction.
ε. inppoee hat $B \notin-\Gamma$ and let $A s \Gamma(X)$ to, som O-dii Polifh X. By Wadre's louna, $A \leq w$ or $B^{\prime} \leq w A$. Re latter option inplies V t $B^{c} \in \Gamma \rightarrow 0 B \in \neg \Gamma$, a cortacicition, so it anst be that $A \leq B$.

We now build a complete analyhic eet. Fach tree T on \mathbb{N} is a schet of $\mathbb{N}^{\mathbb{N}}$ und hence $T \in Z^{\left(W^{(N)}\right)}$. The it T_{0} of trees is in tact a boed unbset of $2^{\left(\mathbb{N}^{\mathbb{N}}\right)}$; indad, for $T \in 2^{\left(\mathbb{N}^{(\mathbb{N}}\right)}$,

Mus, Tr is a Polish space. Lt If dosote the set of all ill-fouded trees Lie. containing ar infinite brach) $T \in T_{r}$. Thus, $W F:=T r \backslash I F$ is the int of well-fouded trees (no infinite branch).

Theorem. IF is complete-analytic. Hence WF is cooplete-coanalytic. Proof. Let $A \in b c$ on anal, i ic suburb of a O-dim Polish X. X is homed to a closed subset of \mathbb{N}^{W}, so mag asiace $x \in \mathbb{N}^{\mathbb{N}}$ closed so $A \in \mathbb{N}^{\mathbb{N}}$ is analytic as a rabbet of $\mathbb{N}^{\mathbb{N}}$ bee closed intersect analytic is still analytic. Thus, $A=\operatorname{prog}_{0} C$ her $C \leq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ is loved. Identifying $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \cong(\mathbb{N} \times \mathbb{N})^{\mathbb{N}}$ al $C \subseteq(\mathbb{N} \times \mathbb{N})^{\mathbb{N}}$, we jet a pruned true T on \mathbb{N} oN sit. $C=[T]^{\prime}$.
Define $p:(\mathbb{N} \times \mathbb{N})^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ and note hid $A=p[T]:=p([T T)$). $\left(x_{1}, y_{n}\right)_{n} \mapsto\left(x_{n}\right)_{n}$
For each $x \in \mathbb{N}^{\mathbb{N}}$, let $T_{x}:=\left\{s \in \mathbb{N}^{\mathbb{N}}:(x(i), s(i))_{i<(s \mid} \in T\right\}$.

The map $f: \mathbb{N}^{\mathbb{N}} \rightarrow \operatorname{Tr}_{r}$ by $x \mapsto T_{x}$ is cativons (ung)), so it remains to show lat it recluces A to $I F$.

$$
\begin{aligned}
\forall x \in \mathbb{N}^{N}, x \in A & \Leftrightarrow x \in p[T] \Leftrightarrow \exists_{j} \in \mathbb{N}^{N}(x j) \in[T] \\
& \Leftrightarrow \exists_{z} \in \mathbb{N}^{N} \quad y \in\left\{T_{k}\right\} \Leftrightarrow T_{x} \in I F .
\end{aligned}
$$

To show tht a set Birnot Boul, it's enoagh to coctimarly achuce If to B. Not boed means there is no cth/ algorith eleterwining the neabership to B. This ir londls illsstrated by the famons result of Frerenan, Rudolph, and weiss, hich sags tht the old progian of var Nenmanan on tryig to clasisif all measure-preserving antonorulism of $([0,1), \lambda)$ up to wojngacy is inpossible:

Theven (F-R-W). The ronjigacy relation ~ on the groop Act $(10,1), \lambda)$ af all meas.-pres. antom. of $[0,1)$ is conplete-analitic. In particular, \exists Boul fuction $\rho: \operatorname{Ant}([0,1), \lambda) \rightarrow \mathbb{R}$ s.t $\forall \varphi, \psi \in \operatorname{Ant}([0, \lambda), \lambda)$, $\varphi \sim \psi \Leftrightarrow \rho(\varphi)=\rho(\psi)$.
Poot of "in proticalce". $0, w$. let ρ_{2} Ant $\left.(20,1), \lambda\right)^{2} \rightarrow \mathbb{R}^{2} b_{y}(\varphi, \psi) \mapsto(\rho(\varphi), S(\varphi))$ anl $\sim=\rho_{2}^{-1}\left(\Delta_{2}\right)$, wher Δ_{2} is the liay of \mathbb{R}^{2}. Hence, \sim is Borel, a costadiction,

